## Inspire Maths 5 Long-term Plan

| Unit title | Key concepts |
| :---: | :---: |
| 1 Whole Numbers (1) |  |
| Numbers to 10 million | - The next place after the ten thousands place is the hundred thousands place <br> - 10 ten thousands $=1$ hundred thousand |
| Place and value | - The actual value of a digit in a number is equal to the digit multiplied by the place value. E.g. the value of the digit 5 in the number 4657809 is 5 ten thousands, i.e. $5 \times 10000=50000$ <br> - The value of a number is the sum of the values of each digit in the number |
| Comparing numbers within 10 million | - In a number, e.g. 1999, the value of the first digit (1000) is always greater than the sum of the values of the remaining digits (999) |
| Rounding to the nearest thousand and estimating | - There are 10 hundreds between two consecutive thousands |
| 2 Whole Numbers (2) |  |
| Using a calculator | - Understanding the concepts of place value and the four operations |
| Multiplying by tens, hundreds or thousands | In the base ten number system: <br> - Ones $\times 10=$ tens, Tens $\times 10=$ hundreds, Hundreds $\times 10=$ thousands <br> - Ones $\times 100=$ hundreds, Tens $\times 100=$ thousands, Hundreds $\times 100=$ ten thousands <br> - Ones $\times 1000=$ thousands, Tens $\times 1000=$ ten thousands, Hundreds $\times 1000=$ hundred thousands |
| Dividing by tens, hundreds or thousands | In the base ten number system: <br> - Thousands $\div 10=$ hundreds, Hundreds $\div 10=$ tens, Tens $\div 10=$ ones, Ones $\div 10=$ tenths <br> - Ten thousands $\div 100=$ hundreds, Thousands $\div 100=$ tens, Hundreds $\div 100=$ ones, Tens $\div 100=$ tenths, Ones $\div 100=$ hundredths <br> - Hundred thousands $\div 1000=$ hundreds, Ten thousands $\div 1000=$ tens, Thousands $\div$ $1000=$ ones, Hundreds $\div 1000=$ tenths Tens $\div 1000=$ hundredths, Ones $\div 1000=$ thousandths |
| Order of operations | - In number sentences with only addition and subtraction or only multiplication and division, the order of operations is from left to right <br> - In number sentences with multiplication and/or division together with addition and/or subtraction, the order of operations is from left to right with multiplication and/or division carried out first <br> - In number sentences with brackets, the order of operations is from left to right with the operations in the brackets carried out first |
| Word problems (1) | - Application of concepts and skills of the four operations to solving word problems |
| Word problems (2) | - Application of concepts and skills of the four operations and various strategies to solving word problems |
| Practice Book - Review 1 |  |
| Assessment Book - Test |  |


| 3 Fractions (1) |  |
| :---: | :---: |
| Like and unlike fractions | - A fraction refers to a part of a whole <br> - Like fractions are fractions with the same denominator <br> - Unlike fractions are fractions with different denominators |
| Adding unlike fractions | - Fractions are equivalent when they show the same parts of the whole <br> - Fractions can be added when they are expressed as like fractions |
| Subtracting unlike fractions | - Two fractions can be subtracted if they come from the same whole or from identical wholes |
| Fractions and division | - A whole number when divided by another whole number can result in: (a) a whole number with or without remainder (b) a proper fraction (c) a mixed number |
| Converting fractions to decimals | - Fractions and decimals are interchangeable <br> - Decimals are a special type of fractions with denominators in tens, hundreds and thousands |
| Adding mixed numbers | - A mixed number comprises a whole number and a proper fraction <br> - Mixed numbers can be added like adding proper and improper fractions |
| Subtracting mixed numbers | - A mixed number comprises a whole number and a proper fraction <br> - Mixed numbers can be subtracted like subtracting proper and improper fractions |
| Word problems | - The following concepts are applied to fractions: part-whole concepts in addition and subtraction, comparison concept, adding-on in addition, taking-away in subtraction and division concept |
| 4 Fractions (2) |  |
| Product of proper fractions | - Multiplying two fractions is the same as finding the fractional part of another fraction |
| Word problems (1) | - The product of two proper fractions is the fractional part of another fraction |
| Product of an improper fraction and a proper or improper fraction | - Multiplying a fraction and another fraction is the same as finding the fractional part of another fraction |
| Product of a mixed number and a whole number | - The product of a whole and a mixed number refers to the group and item multiplication concept |
| Word problems (2) | - Use the group and item multiplication concept to find the product of a whole number and a mixed number |
| Dividing a fraction by a whole number | - Division in fractions is dividing each fractional part into smaller equal parts/units |
| Word problems (3) | - The concepts of the four operations and division of a fraction are applied |
| Practice Book - Review 2 |  |
| Assessment Book - Test 2, Challenging Problems 1, Check-up 1 |  |
| 5 Area of a triangle |  |
| Base and height of a triangle | - Any side of a triangle can be the base and for each base, there is a corresponding height |
| Finding the area of a triangle | - The area of a triangle is half that of its related rectangle <br> - Area of a triangle $=1 / 2 \times$ Base $\times$ Height |


| 6 Ratio |  |
| :---: | :---: |
| Finding ratio | - Ratio is a way of comparing the relative sizes of two quantities or sets of items |
| Equivalent ratios | - Finding the common factor of the terms of the ratio of two quantities <br> - Dividing the terms of a ratio of two quantities by the common factor to express a ratio in its simplest form |
| Word problems (1) | - Applying equivalent ratio concept, part-whole concept, taking away concept and comparison concept to solve up to 2 -step word problems involving ratio of two quantities |
| Comparing three quantities | - Ratio is a way of comparing the relative sizes of three quantities or sets of items |
| Word problems (2) | - Applying equivalent ratio concept, part-whole concept and comparison concept to solve up to 2-step word problems involving ratio of three quantities |
| Practice Book - Review 3 |  |
| Practice Book - Revision 1 |  |
| Assessment Book - Test 3, Challenging Problems 2, Check-up 2 |  |
| 7 Decimals |  |
| Converting decimals to fractions | - Decimals are an extension of fractions <br> - Decimals can be converted to fractions, and vice versa |
| Multiplying by tens, hundreds and thousands | - When a number is multiplied by 10,100 or 1000 , each digit in the number moves 1,2 or 3 places respectively to the left in the place value chart <br> - When a number is multiplied by 10,100 or 1000 , the decimal place shifts 1 , 2 or 3 places respectively to the right |
| Dividing by tens, hundreds and thousands | - When a number is divided by 10,100 or 1000 , each digit in the number moves 1,2 or 3 places respectively to the right in the place value chart <br> - When a number is divided by 10,100 or 1000 , the decimal place shifts 1,2 or 3 places respectively to the left <br> - Dividing by 10 is the same as multiplying by $1 / 10$ |
| Using a calculator | - Understanding the concepts of place value and the four arithmetical operations |
| Word problems | - Application of concepts and skills of the four operations to solving word problems |
| 8 Measurements |  |
| Converting a measurement from a larger unit to a smaller unit | - Understanding direct proportion |
| Converting a measurement from a smaller unit to a larger unit | - Understanding direct proportion |
| Practice Book - Review 4 |  |
| Assessment Book - Test 4 |  |
| 9 Mean (average) |  |
| Understanding mean (average) | - The total amount or sum of the data is found by multiplication: Total $=$ Mean $x$ Number of data or items |
| Word problems | - Applying the mean concept and part-whole concept to solve problems involving more than one set of items |

10 Percentage

| Per cent | - $5 \%$ means 5 out of 100 <br> - Percentage is a specific fraction where the denominator is 100 |
| :---: | :---: |
| Converting more fractions to percentages | - Fractions and percentages are two representations for comparison of numbers <br> - Percentage is a specific fraction where the denominator is 100 |
| Percentage of a quantity | - Percentage of a quantity refers to part of a whole where the whole is equivalent to 100 units |
| Word problems | - 100 parts = the whole $=100 \%$ |
| Practice Book - Review 5 |  |
| Assessment Book - Test 5, Challenging Problems 3, Check-up 3 |  |
| 11 Angles |  |
| Angles on a straight line | - An angle ( $\leq 180^{\circ}$ ) is made when two straight lines meet at a point <br> - A unit of measurement of angles is the degree <br> - The sum of angles on a straight line is $180^{\circ}$ |
| Angles at a point | - The sum of angles at a point is $360^{\circ}$ |
| Vertically opposite angles | - Vertically opposite angles are made by two intersecting straight lines <br> - Vertically opposite angles are equal |
| 12 Properties of Triangles and 4-sided Shapes |  |
| Angles of a triangle | - Sum of angles in a triangle $=180^{\circ}$ |
| Right-angled, isosceles and equilateral triangles (Right-angled triangles) | - A right-angled triangle has one angle equal to $90^{\circ}$ |
| Right-angled, isosceles and equilateral triangles (Isosceles triangles) | - An isosceles triangle has two equal sides |
| Right-angled, isosceles and equilateral triangles (Equilateral triangles) | - An equilateral triangle has three equal sides |
| Parallelograms, rhombuses and trapeziums (Parallelograms) | A parallelogram is a 4-sided shape in which: <br> - the opposite sides are parallel <br> - the opposite angles are equal <br> - each pair of angles between parallel sides adds up to $180^{\circ}$ |
| Parallelograms, rhombuses and trapeziums (Rhombuses) | - A rhombus is a parallelogram with four equal sides where the opposite angles are equal and each pair of angles between parallel sides adds up to $180^{\circ}$ |
| Parallelograms, rhombuses and trapeziums (Trapeziums) | - A trapezium is a 4 -sided shape in which only one pair of opposite sides is parallel and each pair of angles between parallel sides adds up to $180^{\circ}$ |
| Practice Book - Review 6 |  |
| Assessment Book - Test 6 |  |

## 13 Geometrical Construction

\(\left.$$
\begin{array}{|l|l|}\hline \text { Drawing triangles } & \begin{array}{l}\text { - Given two angles and the side adjacent to the given angles or two sides and the } \\
\text { included angle, only one triangle can be drawn }\end{array} \\
\hline \text { Drawing 4-sided shapes } & \begin{array}{l}\text { - Given the side of a square, only one square can be drawn } \\
\text { - Given the length and width of a rectangle, only one rectangle can be drawn } \\
\text { - Given one side and one angle of a rhombus, only one rhombus can be drawn } \\
\text { - Given two adjacent sides and one angle of a parallelogram, only one parallelogram } \\
\text { can be drawn }\end{array}
$$ <br>
- Given two adjacent sides, the included angle and the angle adjacent to the included <br>
angle of a trapezium with the parallel sides indicated, only one trapezium can be <br>

drawn\end{array}\right]\)| 14 Volume of Cubes and Cuboids |
| :--- | :--- | :--- |

